397
Views
52
CrossRef citations to date
0
Altmetric
Articles

A thermomechanical model for the analysis of disc brake using the finite element method in frictional contact

&
Pages 305-320 | Received 28 Aug 2019, Accepted 18 Oct 2019, Published online: 15 Nov 2019
 

Abstract

In this work, a numerical simulation of the transient thermal analysis and the static structural one was performed here sequentially, with the coupled thermo-structural method using the ANSYS software. Numerical procedure of calculation relies on important steps such that the CFD thermal analysis has been well illustrated in 3D, showing the effects of heat distribution over the brake disc. This CFD analysis helped in the calculation of the values of the thermal coefficients (h) that have been exploited in the 3D transient evolution of the brake disc temperatures. Three different brake disc materials were selected in this simulation and comparative analysis of the results was conducted in order, to derive the one with the best thermal behavior. Finally, the resolution of the coupled thermomechanical model allows to visualize other important results of this research such as; the deformations, and the equivalent stresses of Von Mises of the disc, as well as the contact pressure of the brake pads. Following our analysis and results we draw from it, we derive several conclusions. The choice makes it possible to deliver the best brake rotor so as to ensure and guarantee the good braking performance of the vehicles.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 694.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.