261
Views
7
CrossRef citations to date
0
Altmetric
Articles

Kinetics, thermodynamics and metal separation studies of transition (Co2+, Ni2+, Cu2+, Zn2+) and heavy metal ions (Cd2+, Hg2+, Pb2+) using novel hybrid ion exchanger—Zirconium amino tris methylene phosphonic acid

&
Pages 1560-1572 | Received 07 Jun 2018, Accepted 31 Aug 2018, Published online: 13 Sep 2018
 

ABSTRACT

Zirconium amino tris(methylenephosphonic acid) (Zr-ATMP)—a novel hybrid ion-exchange material of the class of tetravalent metal acid (TMA) salts—has been synthesized via the sol–gel route using inexpensive and easily available chemicals. In the present endeavour, we hereby report various kinetic [ (D0), (Ea) (ΔS*) and thermodynamic parameters [ (K), (ΔG°), (ΔH°) (ΔS°) in the temperature range (30–60 °C)] for transition metal ions (Co2+, Ni2+, Cu2+, Zn2+) and heavy metal ions (Cd2+, Hg2+, Pb2+). Metal ion adsorption with varying concentrations and temperatures has been studied using Langmuir and Fruendlich adsorption isotherms. Sorption behaviour of the metal ions mentioned above towards Zr-ATMP has been studied by evaluating Kd (distribution coefficient) under different conditions. Based on Kd (mL.g−1), the selectivity order for metal ions towards Zr-ATMP is found to be Cu2+ (C.S)>Ni2+ (2980)>Zn2+(1810)>Co2+(1250) amongst transition metal ions and Pb2+(3612)>Cd2+(1601)>Hg2+(125) amongst heavy metal ions. Elution behaviour of these metal ions has been studied using acids and electrolytes. Based on α separation factor, a few binary and ternary metal ion separations have been carried out successfully. Regeneration and reuse of the ion exchanger have also been studied. It is observed that the ion exchanger is effective up to four cycles without much decline in performance. The study indicates that Zr-ATMP has good potential to be used as a cation exchanger.

Supplementary data

Supplemental data for this article can be accessed here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.