694
Views
29
CrossRef citations to date
0
Altmetric
CO2 Capture

3D printed structures for optimized carbon capture technology in packed bed columns

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2047-2058 | Received 26 Nov 2018, Accepted 20 May 2019, Published online: 03 Jun 2019
 

ABSTRACT

The use of 3D printed structured packing for the optimization of aqueous-amine based carbon capture in packed absorption columns is examined in this paper. An experimental testing system has been set up, and initial comparisons were made between metal, plastic, and 3D printed 16-inch packing elements and between three 8-inch 3D printed elements of different densities. Pressure drop measurements were obtained at various air flowrates under dry conditions. Measurements were also taken for a wet system by adding water at six different liquid flowrates. In each case, theoretical calculations for pressure drop were performed based on a model presented in the literature. It was found that, for the 16-inch dry column, the model slightly overpredicts the pressure drop. The model provides an accurate prediction for the dry 8-inch experimental data, especially for the two least dense packing elements. For the wet system, the model overpredicts the pressure drop, likely due to modeling deficiencies when the column reaches its loading limit. These results provide sufficient confidence to move forward with testing and process intensification of the CO2 capture process.

Acknowledgments

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Additional information

Funding

This research was funded by the Office of Fossil Energy of the U.S. Department of Energy. Stephen Bolton was supported by the HERE-NAE-GCSP program at Oak Ridge National Laboratory.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.