1,957
Views
4
CrossRef citations to date
0
Altmetric
Theory and Methods

On High-Dimensional Constrained Maximum Likelihood Inference

, &
Pages 217-230 | Received 13 Aug 2017, Accepted 21 Oct 2018, Published online: 11 Apr 2019
 

Abstract

Inference in a high-dimensional situation may involve regularization of a certain form to treat overparameterization, imposing challenges to inference. The common practice of inference uses either a regularized model, as in inference after model selection, or bias-reduction known as “debias.” While the first ignores statistical uncertainty inherent in regularization, the second reduces the bias inbred in regularization at the expense of increased variance. In this article, we propose a constrained maximum likelihood method for hypothesis testing involving unspecific nuisance parameters, with a focus of alleviating the impact of regularization on inference. Particularly, for general composite hypotheses, we unregularize hypothesized parameters whereas regularizing nuisance parameters through a L0-constraint controlling the degree of sparseness. This approach is analogous to semiparametric likelihood inference in a high-dimensional situation. On this ground, for the Gaussian graphical model and linear regression, we derive conditions under which the asymptotic distribution of the constrained likelihood ratio is established, permitting parameter dimension increasing with the sample size. Interestingly, the corresponding limiting distribution is the chi-square or normal, depending on if the co-dimension of a test is finite or increases with the sample size, leading to asymptotic similar tests. This goes beyond the classical Wilks phenomenon. Numerically, we demonstrate that the proposed method performs well against it competitors in various scenarios. Finally, we apply the proposed method to infer linkages in brain network analysis based on MRI data, to contrast Alzheimer’s disease patients against healthy subjects. Supplementary materials for this article are available online.

Acknowledgments

The authors thank the editors, the associate editor, and anonymous referees for helpful comments and suggestions.

Additional information

Funding

Research supported in part by NSF grants DMS-1415500, DMS-1712564, DMS-1721216, DMS-1712580, DMS-1721445, and DMS-1721445, NIH funding: NIH grants 1R01GM081535-01, 1R01GM126002, HL65462, and R01HL105397.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.