2,232
Views
16
CrossRef citations to date
0
Altmetric
Applications and Case Studies

MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From Designed Experiments

, , , &
Pages 599-609 | Received 18 Jul 2017, Accepted 18 May 2019, Published online: 05 Jul 2019
 

Abstract

Recent advances in bioinformatics have made high-throughput microbiome data widely available, and new statistical tools are required to maximize the information gained from these data. For example, analysis of high-dimensional microbiome data from designed experiments remains an open area in microbiome research. Contemporary analyses work on metrics that summarize collective properties of the microbiome, but such reductions preclude inference on the fine-scale effects of environmental stimuli on individual microbial taxa. Other approaches model the proportions or counts of individual taxa as response variables in mixed models, but these methods fail to account for complex correlation patterns among microbial communities. In this article, we propose a novel Bayesian mixed-effects model that exploits cross-taxa correlations within the microbiome, a model we call microbiome mixed model (MIMIX). MIMIX offers global tests for treatment effects, local tests and estimation of treatment effects on individual taxa, quantification of the relative contribution from heterogeneous sources to microbiome variability, and identification of latent ecological subcommunities in the microbiome. MIMIX is tailored to large microbiome experiments using a combination of Bayesian factor analysis to efficiently represent dependence between taxa and Bayesian variable selection methods to achieve sparsity. We demonstrate the model using a simulation experiment and on a 2 × 2 factorial experiment of the effects of nutrient supplement and herbivore exclusion on the foliar fungal microbiome of Andropogon gerardii, a perennial bunchgrass, as part of the global Nutrient Network research initiative. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Supplementary Materials

The supplemental materials include a description of the NutNet data collection, MCMC details, additional simulation studies, and supporting details of the NutNet data analysis including prior-sensitivity and model-fit checks

Additional information

Funding

This work was supported by National Science Foundation award EF-1241794.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.