243
Views
28
CrossRef citations to date
0
Altmetric
Article

Oleanolic Acid Suppressed DMBA-Induced Liver Carcinogenesis through Induction of Mitochondrial-Mediated Apoptosis and Autophagy

, , & ORCID Icon
Pages 968-982 | Received 30 Dec 2019, Accepted 26 May 2020, Published online: 10 Jun 2020
 

Abstract

Phytochemicals appeared as a rich source of efficient and safe agents against many diseases like cancer. Various herbal sources are rich in oleanolic acid (OA). The scope of this study was to assess the biochemical and molecular mechanisms implicated in the ameliorative potency of OA against DMBA-induced liver carcinogenesis. Forty-eight male albino mice were assigned randomly to five groups (eight mice each) as follows: control healthy group, olive oil group, OA group, DMBA group, and DMBA with OA. Apoptosis, autophagy, inflammation, proliferation, and angiogenesis were investigated in the tissue samples. Histopathological examination was carried out as well as liver enzymes activity and other hepatic antioxidant and inflammatory biomarkers. The treatment with OA effectively suppressed the DMBA-initiated liver carcinogenesis via modulation of antioxidant status, induction of apoptosis and autophagy through modulating the expression of Caspase-3, Bcl-2 and Beclin-1, inhibiting angiogenesis (VEGF), proliferation (PCNA), and improved liver function and histological picture with a reduction in AFP level. Additionally, OA applies its antitumor effects by inhibition of proinflammatory transcription factor NF-κB and inflammatory markers (TNF-α and Cox-2) associated with DMBA administration. The present study shows that OA treatment efficiently suppressed the DMBA-initiated liver carcinogenesis through induction of mitochondrial-mediated apoptosis and autophagy and modulating inflammation.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Author Contributions

Amr Negm, Heba Sahyon, and Samar Hosny researched data and contributed to discussion and wrote the first draft of the manuscript. Amr Negm, Heba Sahyon, Magdy Youssef, and Samar Hosny contributed to discussion, wrote and reviewed the final manuscript and followed publication process.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 633.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.