688
Views
9
CrossRef citations to date
0
Altmetric
Reviews

A Review of the Anti-Cancer Potential of Murraya koenigii (Curry Tree) and Its Active Constituents

ORCID Icon, &
Pages 12-26 | Received 17 Sep 2020, Accepted 21 Jan 2021, Published online: 15 Feb 2021
 

Abstract

Murraya koenigii (MK) relates to the Rutaceae family and has many health benefits. To date, over eighty-eight carbazole alkaloids along with terpenoids, and other nutrients have been identified from different parts of this plant. This review presents accumulated information regarding the role of MK and its constituents in the prevention/treatment of cancer. Literature survey revealed that MK and its constituents target multiple deranged pathways associated with apoptosis, growth (JAK-STAT, mTOR), and cell cycle in a variety of cancerous cell lines (colon, lung, liver, skin, prostate, breast, etc.) and few animal models. Thus, the present review highlights the anticancer mechanism of MK and its phytoconstituents, and further future perspectives. The ameliorating effects of MK and its phytoconstituents against various cancers warrant its multi-institutional clinical trials as soon as possible. The prospects of relatively cheaper cancer drugs could then be brighter, particularly for the socio-economically feebler cancer patients of the world.

Disclosure Statement

The authors have no potential conflict of interest to disclose.

Funding

This work is entirely self-funded.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 633.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.