110
Views
4
CrossRef citations to date
0
Altmetric
Articles

Stromal cell-derived factor-1 (SDF-1) expression in very preterm human lungs: potential relevance for stem cell therapy for bronchopulmonary dysplasia

, , &
Pages 146-156 | Received 10 Jan 2020, Accepted 01 Apr 2020, Published online: 11 Apr 2020
 

Abstract

Background: The axis formed by CXC chemokine receptor 4 (CXCR4), expressed on mesenchymal stromal cells (MSCs), and stromal cell-derived factor-1 (SDF-1), expressed in recipient organs, is a critical mediator of MSC migration in non-pulmonary injury models. The role and regulation of SDF-1 expression in preterm lungs, of potential relevance for MSC-based cell therapy for bronchopulmonary dysplasia (BPD), is unknown. The aim of this study was to determine the spatiotemporal pattern of CXCR4/SDF-1 expression in lungs of extremely preterm infants at risk for BPD.

Methods: Postmortem lung samples were collected from ventilated extremely preterm infants who died between 23 and 29 wks (“short-term ventilated”) or between 36 and 39 wks (“long-term ventilated”) corrected postmenstrual age. Results were compared with age-matched infants who had lived <12 h or stillborn infants (“early” and “late” controls). CXCR4 and SDF-1 expression was studied by immunohistochemistry, immunofluorescence/confocal microscopy, and qRT-PCR analysis.

Results: Compared with age-matched controls without antenatal infection, lungs of early control infants with evidence of intrauterine infection/inflammation showed significant upregulation of SDF-1 expression, localized to the respiratory epithelium, and of CXCR4 expression, localized to stromal cells. Similarly, pulmonary SDF-1 mRNA levels were significantly higher in long-term ventilated ex-premature infants with established BPD than in age-matched controls. The pulmonary vasculature was devoid of SDF-1 expression at all time points. Endogenous CXCR4-positive stromal cells were preferentially localized along the basal aspect of SDF-1-positive bronchial and respiratory epithelial cells, suggestive of functionality of the CXCR4/SDF-1 axis.

Conclusions: Incipient and established neonatal lung injury is associated with upregulation of SDF-1 expression, restricted to the respiratory epithelium. Knowledge of the clinical associations, time-course and localization of pulmonary SDF-1 expression may guide decisions about the optimal timing and delivery route of MSC-based cell therapy for BPD.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.