623
Views
17
CrossRef citations to date
0
Altmetric
Articles

Tomato waste compost as an alternative substrate to peat moss for the production of vegetable seedlings

, , , &
Pages 287-295 | Received 18 Dec 2017, Accepted 09 Aug 2018, Published online: 31 Dec 2018
 

Abstract

Different proportions of tomato waste compost (TWC) were combined with peat moss and vermiculite as growth substrates used to evaluate the quality of seedlings of economic vegetables, including tomato, hot pepper, cucumber and summer squash. The seeding substrates used were: (T0), vermiculite: peat moss: TWC (4: 1: 0, by weight), 0% TWC; (T1), vermiculite: peat: TWC (4: 0.75: 0.25), 5% TWC; (T2), vermiculite: peat: TWC (4: 0.5: 0.5), 10% TWC; (T3), vermiculite: peat: TWC (4: 0.25: 0.75), 15% TWC; and (T4), vermiculite: peat: TWC (4: 0: 1), 20% TWC. The best seedling response was recorded in substrate mixtures supplemented with 5% and 10% TWC, which hastened seed germination and improved seedling morphology. Since vegetable seedlings produced with TWC-amended substrate were of higher quality, compared to those produced exclusively on peat substrate, we suggest that TWC may be used to replace partially peat-based substrate used for vegetable transplants production in nurseries.

Additional information

Funding

The authors gratefully acknowledge support by The National Science, Technology and Innovation Plan (NSTIP), Strategic Technologies program number (12-ENV-2814-02), Kingdom of Saudi Arabia.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.