333
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Effect of nitrogen rates applying controlled-release and conventional urea blend in maize

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2199-2208 | Received 02 Jan 2019, Accepted 08 Feb 2019, Published online: 29 Aug 2019
 

Abstract

Blending polymer-sulfur coated urea (PSCU) and conventional urea (U) for maize (Zea mays L.) fertilization can supply nitrogen (N) during the crop cycle with a single application. Proper placement of PSCU + U (0.15 m below and 0.1 m to the side of seed row) in band application at sowing is necessary to reduce salt stress that can decrease dry weight (DU) and N uptake (NU) of maize plant compromising maize yield. It is not clear the proper N rate in the proper placement for band application of PSCU + U at maize sowing to avoid salt stress. In the current literature, reduction of N rates are being recommended using PSCU + U without consider the probably salt stress provided by high rates of PSCU + U. DW and NU in maize plant as well as soil pH and electrical conductivity (EC) were evaluated in a greenhouse pot trial. N treatments were equivalent to 0, 90, 180, 360 and 540 kg N ha−1 applied incorporated in band in two contrasting soils (Rhodic Eutrustox and Typic Haplustox) using 70%PSCU + 30%U. At V10 (vegetative leaf stage 10), DW and NU of maize aerial part had quadratic behavior in response to increase N rates in the Typic Haplustox soil. In the Rhodic Eutrustox was not observed known behavior for DW and NU in response to increase N rates. Soil pH and EC was higher in the fertilizer row than sowing row. A N rate above of 180 kg N ha−1 using 70%PSCU + 30%U incorporated in bands can reduce DW and NU in early maize plant growth associated with salt concentration of N fertilizer in a Typic Haplustox soil, which could compromise maize yield.

Additional information

Funding

This work was funded by PRODUQUÍMICA Ind. Com. S.A. and the National Council for Scientific and Technological Development (CNPq) (Process n. 442691214-9).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.