Publication Cover
Ozone: Science & Engineering
The Journal of the International Ozone Association
Volume 45, 2023 - Issue 2
49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of Solvent upon Reactive Capacity of Ozone in Respect of 1,3-Dimethyl-Substituted Uracils

, &
Pages 174-181 | Received 05 Jan 2022, Accepted 28 Feb 2022, Published online: 17 Mar 2022
 

ABSTRACT

Reactive capacity of ozone in respect of three representatives of the nitrogenous bases (1,3-dimethylthymine, 1,3,6-trimethyluracil, and 5-hydroxy-1,3,6-trimethyluracil) in two solvents having different polarities (Н2О and CCl4) was investigated with the help of the ultraviolet spectroscopy method. At the first stage of investigations, coefficients of extinction of 1,3-DMU in the selected solvents were determined. At the next stage, kinetics of absorption of ozone by solutions of 1,3-dimethyl-substituted uracils at room temperature (295°K) was studied with the help of the bubbling equipment. It was established that parent compounds (О3 and 1,3-DMU) react in the equimolar relationships, that is, 1 g-mol of the consumed uracil corresponds to 1 g-mol of the absorbed ozone. On the basis of the data on the stoichiometry and kinetics of consumption of the parent compounds, obvious and definitive conclusion was made: the reactions under investigation comply with the kinetic law of the second order (of the first order – in respect of О3 and of the first order – in respect of 1,3-DMU). In the course of further investigations, temperature (from 285°K up to 309°K) dependences of constants of velocities of the second order were investigated, as well as parameters of the Arrhenius equation in respect of reactions of ozone were determined. It was established that the reaction rate constants of reactions between ozone and 1,3-DMU within the medium of the nonpolar organic solvent (CCl4) exceed the reaction rate constants within the medium of the polar solvent (Н2О).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The study was supported by a grant from the Russian Science Foundation (project No. 19-73-20073).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 403.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.