129
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of collision on self-assembly of nanoparticles in zirconia microparticle suspension

&
Pages 787-795 | Received 24 Apr 2020, Accepted 12 Oct 2020, Published online: 18 Nov 2020
 

Abstract

Nanoparticle halo mechanism is a stabilization method for microparticle suspensions. This study investigates suspension pH and nanoparticles–microparticles collision effects on the stabilization of an aqueous binary suspension. The long-term turbidity measurements show that for the nanosilica suspension stability is directly correlated with pH values; however, in the cases of zirconia and binary suspensions, it is not a monotonic function of pH. It is shown that for binary suspension, the halo mechanism is the primary method affecting the stability of the suspension. The suspension is best-stabilized at pH = 5 that is associated with high halo mechanism efficiency, while increased repulsive forces between micro and nanoparticles at pH = 8 result in halo mechanism decrease and so the stability reaches its minimum. On the other hand, a different trend is observed when the suspension includes only the silica microparticles, maximum stability is at pH = 8, that is related to the higher electrical repulsive forces between microparticles, and it is minimum at pH = 5, because of attractive Van der Waals forces dominancy. Furthermore, the results show that more collision between the nanoparticles and microparticles results in more adsorption of nanoparticles and hence more suspension stabilization at every pH values. This can be attributed to the increased collision between nanoparticles resulting in more nanoparticles be trapped in the profound potential well close to the microparticle surface, and so a stronger nanoparticle halo will form. Besides, it revealed that the effect of the collision on the stability of suspension is more significant at pH = 5.

GRAPHICAL ABSTRACT

Variation in turbidity of Zirconia and binary suspensions with ultrasonic and without ultrasonic with φmicro = 3.43 × 10−5 and φnano = 1.5 × 10−3 at pH 5

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.