Publication Cover
Cybernetics and Systems
An International Journal
Volume 55, 2024 - Issue 1
125
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fine-Grained Population Mobility Data-Based Community-Level COVID-19 Prediction Model

, &
Pages 184-202 | Published online: 23 Jul 2022
 

Abstract

Predicting the number of infections in the anti-epidemic process is extremely beneficial to the government in developing anti-epidemic strategies, especially in fine-grained geographic units. Previous works focus on low spatial resolution prediction, e.g., county-level, and preprocess data to the same geographic level, which loses some useful information. In this paper, we propose a fine-grained population mobility data-based model (FGC-COVID) utilizing data of two geographic levels for community-level COVID-19 prediction. We use the population mobility data between Census Block Groups (CBGs), which is a finer-grained geographic level than community, to build the graph and capture the dependencies between CBGs using graph neural networks (GNNs). To mine as finer-grained patterns as possible for prediction, a spatial weighted aggregation module is introduced to aggregate the embeddings of CBGs to community level based on their geographic affiliation and spatial autocorrelation. Extensive experiments on 300 days LA city COVID-19 data indicate our model outperforms existing forecasting models on community-level COVID-19 prediction.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 782.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.