243
Views
9
CrossRef citations to date
0
Altmetric
Articles

Profile likelihood approaches for semiparametric copula and frailty models for clustered survival data

ORCID Icon, &
Pages 2553-2571 | Received 08 Dec 2017, Accepted 26 Mar 2019, Published online: 04 Apr 2019
 

ABSTRACT

In clustered survival data, the dependence among individual survival times within a cluster has usually been described using copula models and frailty models. In this paper we propose a profile likelihood approach for semiparametric copula models with different cluster sizes. We also propose a likelihood ratio method based on profile likelihood for testing the absence of association parameter (i.e. test of independence) under the copula models, leading to the boundary problem of the parameter space. For this purpose, we show via simulation study that the proposed likelihood ratio method using an asymptotic chi-square mixture distribution performs well as sample size increases. We compare the behaviors of the two models using the profile likelihood approach under a semiparametric setting. The proposed method is demonstrated using two well-known data sets.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2017R1E1A1A03070747).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 549.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.