229
Views
8
CrossRef citations to date
0
Altmetric
Article

Single electro-optic curve for RGB colours in blue-phase liquid crystal display

ORCID Icon, , , , , , , , , & show all
Pages 835-845 | Received 17 Aug 2018, Accepted 26 Sep 2018, Published online: 15 Oct 2018
 

ABSTRACT

The double-layer penetration electrode structure is proposed to obtain the low-operating voltage blue-phase liquid crystal display (BPLCD) with single electro-optic curve for red-green-blue (RGB) colours in every pixel, which is more suitable for the field-sequential-colour display. The different influences of electrode’s parameters and driving methods on the electro-optical properties of the proposed BPLCD are investigated. The results demonstrate that the operating voltage can be reduced from 53.80 V to 23.00 V for red colour. Besides, the coincident voltage-dependent transmittance curves for RGB colours are obtained by adjusting the applied voltage of sub-electrode. Thus, RGB lights can pass through every pixel with single electro-optic curve, which is good for resolution enhancement and single gamma driving. Besides, the maximum gamma shift of the proposed BPLCD is less than 0.1099 at 60° polar angle for the red colour, and the gamma shift difference between red and blue colours is only 0.0542. If the high dielectric constant material is used as the protrusion, the operating voltage can be further decreased, which is close to that of the BPLCD with wall-shaped electrode structure.

GRAPHICAL ABSTRACT

Acknowledgments

The authors would like to thank Haiwei Chen (Group of Prof. Shin-Tson Wu, University of Central Florida, USA) for the help.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [Grant Numbers 61475042, 11304074 and 11274088], the Natural Science Foundation of Hebei Province [Grant Numbers A2015202320 and GCC2014048].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.