974
Views
23
CrossRef citations to date
0
Altmetric
Articles

Age-Based Prediction of Maximal Heart Rate in Children and Adolescents: A Systematic Review and Meta-Analysis

, , , & ORCID Icon
Pages 417-428 | Received 07 Jan 2019, Accepted 29 Apr 2019, Published online: 03 Jun 2019
 

ABSTRACT

Purpose: Maximal heart rate (MHR) is an important physiologic tool for prescribing and monitoring exercise in both clinical and athletic settings. However, prediction equations developed in adults may have limited accuracy in youth. The purpose of this study was to systematically review and analyze the available evidence regarding the validity of commonly used age-based MHR prediction equations among children and adolescents. Methods: Included articles were peer-reviewed, published in English, and compared measured to predicted MHR in male and female participants <18 years old. The standardized mean difference effect size (ES) was used to quantify the accuracy of age-predicted MHR values and a priori moderators were examined to identify potential sources of variability. Results: The cumulative results of 20 effects obtained from seven articles revealed that prediction equations did not accurately estimate MHR (ES= 0.44, p < .05) by 6.3 bpm (bpm). Subgroup analyses indicated that the Fox equation (MHR = 220–age) overestimated MHR by 12.4 bpm (ES = 0.95, p < .05), whereas the Tanaka equation (MHR = 208–0.7*age) underestimated MHR by 2.7 bpm (ES = −0.34, p < .05). Conclusions: Age-based MHR equations derived from adult populations are not applicable to children. However, if the use of age-based equations cannot be avoided, we recommend using the Tanaka equation, keeping in mind the range of error reported in this study. Future research should control for potential pubertal influences on sympathetic modulation during exercise to facilitate the development of more age-appropriate methods for prescribing exercise intensity.

Supplementary material

Supplementary data for this article can be found on the publisher’s website.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 213.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.