311
Views
10
CrossRef citations to date
0
Altmetric
Articles

Experimental study on the packing densification of mixtures of spherical and cylindrical particles subjected to 3D vibrations

, ORCID Icon, , , , & show all
Pages 251-260 | Published online: 16 Jan 2018
 

ABSTRACT

To identify the dense packing of cylinder–sphere binary mixtures (spheres as filling objects), the densification process of such binary mixtures subjected to three-dimensional (3D) mechanical vibrations was experimentally studied. Various influential factors including vibration parameters (such as vibration time t, vibration amplitude A, frequency ω, vibration acceleration Γ) as well as particle size ratio r (small sphere vs. large cylinder), composition of the binary mixtures XL (volume fraction of cylinders), and container size D (container diameter) on the packing density ρ were systematically investigated. The results show that the optimal vibration parameters for different binary cylinder–sphere mixtures are different. The smaller the size ratio, the less vibration acceleration is needed to form a stable dense packing. For each binary mixture, high packing density can be obtained when the volume fraction of large cylindrical particles is dominant. Meanwhile, increasing the container size can decrease the container wall effect and get higher packing density. The proposed analytical model has been proved to be valid in predicting the packing densification of current cylinder–sphere binary mixtures.

Additional information

Funding

We are grateful to the National Natural Science Foundation of China (No. 51374070) and Fundamental Research Funds for the Central Universities of China (No. N162505001) for the financial support of current work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.