163
Views
2
CrossRef citations to date
0
Altmetric
Mechanisms

Autoantibody of interleukin-17A induced by recombinant Mycobacterium smegmatis attenuates airway inflammation in mice with neutrophilic asthma

, PhD, , PhD, , PhD, , PhD & , PhD
Pages 2117-2126 | Received 23 Jun 2021, Accepted 02 Oct 2021, Published online: 18 Nov 2021
 

Abstract

Objective

Previous studies have shown Interleukin (IL)-17A as an important contributor to the development of severe asthma, which is mainly characterized by neutrophilic inflammation and less response to corticosteroids. Consequently, the IL-17A-neutrophil axis could be a potential therapeutic target. Previously, we constructed a recombinant Mycobacterium smegmatis (rMS) expressing fusion protein Ag85A-IL-17A, and confirmed it could induce production of IL-17A autoantibody in vivo. This study uses a murine model of neutrophilic asthma to further investigate the effects of rMS on airway inflammation.

Methods

DO11.10 mice were divided into four groups: phosphate buffered saline (PBS), asthma, rMS and MS. This murine model of neutrophilic asthma was established with ovalbumin (OVA) challenge, whereby PBS, rMS and MS were administered intranasally. Anti-inflammatory effects on inflammatory cell infiltration and expression of inflammatory mediators in bronchoalveolar lavage fluid (BALF) were evaluated, along with histopathological changes in lung tissues.

Results

A sustained high-titer IL-17A autoantibody was detected in sera of the rMS group. Compared to the asthma group, the number of neutrophils, IL-17A, CXCL-1 levels and MPO activity in the rMS group were all significantly reduced (p < 0.01). Histological analysis showed rMS remarkably suppressed inflammatory infiltration around bronchia. The inflammation score and the mucus score in the rMS group were both significantly lower than those in the asthma group (p < 0.001).

Conclusion

rMS ameliorated airway inflammation in mice with neutrophilic asthma caused by inducing IL-17A autoantibody and regulating the IL-17A-neutrophil axis, thus offering a possible novel treatment for neutrophilic asthma.

Acknowledgements

The authors wish to thank Professor Sheng Guo (Department of Endocrinology, Shanghai Jiao Tong University Affiliated Children’s Hospital) for his kind assistance in study design.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Funding

This work was supported by the Natural Science Foundation of Shanghai, China [19ZR1438400].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,078.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.