312
Views
1
CrossRef citations to date
0
Altmetric
Transformation of Mental Health & Brain Disorders Management

Machine learning models to predict neuropsychiatric disorders in various brain tumors

&
Pages 687-696 | Received 23 Jul 2021, Accepted 14 Feb 2022, Published online: 02 Mar 2022
 

Abstract

Objective

Neuropsychiatric disorders in brain tumor patients are commonly observed. It is difficult to anticipate these disorders in different types of brain tumors. The goal of the study was to see how well machine learning (ML)-based decision algorithms might predict neuropsychiatric problems in different types of brain tumors.

Methods

145 histopathologically-confirmed primary brain tumors of both gender aged 25–65 years of age, were included for neuropsychiatric assessments. The datasets of brain tumor patients were employed for building the models. Four different decision ML classification trees/models (J48, Random Forest, Random Tree & Hoeffding Tree) with supervised learning were trained, tested, and validated on class labeled data of brain tumor patients. The models were compared in order to determine the best accurate classifier in predicting neuropsychiatric problems in various brain tumors. Following categorical attributes as independent variables (predictors) were included from the data of brain tumor patients: age, gender, depression, dementia, and brain tumor types. With the machine learning decision tree/model techniques, a multi-target classification was performed with classes of neuropsychiatric diseases that were predicted from the selected attributes.

Results

86 percent of patients were depressed, and 55 percent were suffering from dementia. Anger was the most often reported neuropsychiatric condition in brain tumor patients (92.41%), followed by sleep disorders (83%), apathy (80%), and mood swings (76.55%). When compared to other tumor types, glioblastoma patients had a higher rate of depression (20%) and dementia (20.25%). The developed models Random Forest and Random Tree were found successful with an accuracy of up to 94% (10-folds) for the prediction of neuropsychiatric disorders in brain tumor patients. The multiclass target (neuropsychiatric ailments) accuracies were having good measures of precision (0.9–1.0), recall (0.9–1.0), F-measure (0.9–1.0), and ROC area (0.9–1.0) in decision models.

Conclusion

Random Forest Trees can be used to accurately predict neuropsychiatric illnesses. Based on the model output, the ML-decision trees will aid the physician in pre-diagnosing the mental issue and deciding on the best therapeutic approach to avoid subsequent neuropsychiatric issues in brain tumor patients.

Transparency

Declaration of funding

This paper was not funded.

Declaration of financial/other relationships

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Acknowledgements

None.

Ethical statement

This research study conformed to the provisions of the Declaration of Helsinki. The study conformed to the institutional ethical standards.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.