283
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Equilibrium and Computational Chemical Modelling Studies for the Removal of Methyl Orange and Methyl Red Dyes from Water Using Modified Silica Resin

ORCID Icon, ORCID Icon, , ORCID Icon, &
Pages 8000-8016 | Received 22 May 2021, Accepted 02 Sep 2021, Published online: 23 Sep 2021
 

ABSTRACT

This study describes the removal of methyl orange (MO) and methyl red (MR) dyes from water samples using morpholinomethylcalix[4]arene immobilised silica (MIS) resin. The silica surface has been modified by p-morpholinomethylcalix[4]arene moiety and was characterised by FT-IR spectroscopy and SEM techniques. The adsorption capacity of MIS-resin was checked through batch adsorption experiments under the optimised conditions of pH, MIS-resin dose, time, and temperature. Results show that adsorption of MO and MR dyes are highly affected by the change in pH; thus, the higher adsorption percentages were achieved at pH 5.3 and 6.6 respectively. The adsorbent dosage has been optimised and it was noticed that the maximum adsorption was achieved by using 40 mg.L−1 of MIS-resin dose. The adsorption rate of dyes was investigated by applying the pseudo-first and second-order kinetic models and it has been observed that the experimental data shows a better correlation coefficient with the pseudo-second-order kinetic model. The feasibility of adsorption was analysed by thermodynamic parameters such as ∆H°, ∆G°, and ∆S° values indicate that the adsorption of dyes is exothermic and spontaneous. The equilibrium data have been validated using Langmuir and Freundlich models and the Langmuir model has a good correlation coefficient (R2 0.99). The MIS-resin was applied onto industrial effluents and it has been observed that the prepared resin is a very efficient adsorbent for the treatment of dyes contaminated wastewater. The adsorption of MO and MR dyes onto MIS-resin was well defined by computational chemical modelling at the B3LYP/LANL2DZ/6-311++G (d,p) level using G09W software.

Acknowledgments

Authors are thankful to National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan, for facilitating this work. Authors are also extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research group under grant number R.G.P1/173/42.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.