161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Facile one pot synthesis of sulphur doped graphene for non-enzymatic sensing of hydrogen peroxide

, , , &
Pages 8051-8062 | Received 20 Jul 2021, Accepted 06 Sep 2021, Published online: 21 Sep 2021
 

ABSTRACT

Herein we demonstrated the preparation of sulphur-doped graphene (SG) prepared via hydrothermal route. The resulted material is used for making highly sensitive and selective electrochemical sensor platform for accurate quantification of Hydrogen Peroxide (H2O2). Structural features and surface morphology of synthesised materials are fully examined using High resolution Transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM), FT-IR and Raman spectroscopy techniques. In addition to that, electrochemical techniques like cyclic voltammetry (CV) and chronoamperometry (CA) are used to quantify the electron transfer kinetics and electro catalytic activity, these results inveterate it is due to strong electron donating ability of doped sulphur (S) atom and edge plane sites in SG that promotes the electron transfer process at electrode-electrolyte interface. The SG modified glassy carbon electrode (SG/GCE) exhibited finite selectivity; sensitivity stability with a regression coefficient (R2) value is 0.99 towards H2O2 estimation. The above observation conclude that these results are finest report to scrutinise the electrochemical properties of Graphene network by doping with Sulphur atom and it served as an important benchmark for the development of inexpensive SG based sensor platforms for electrochemical biosensor applications.

Acknowledgments

KS is greatly acknowledged to Dr. R. Ramesh Raju, Assistant professor, Department of Chemistry, Acharya Nagarjuna University, Andhra Pradesh for his constant support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is not financially supported by any funding agencies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.