134
Views
4
CrossRef citations to date
0
Altmetric
Articles

Optimal balance for rotating shallow water in primitive variables

&
Pages 429-452 | Received 29 Jan 2020, Accepted 18 Mar 2020, Published online: 02 Apr 2020
 

ABSTRACT

Optimal balance is a near-optimal computational algorithm for nonlinear mode decomposition of geophysical flows into balanced and unbalanced components. It was first proposed as “optimal potential vorticity balance” by Viúdez and Dritschel [J. Fluid Mech., 2004, 521, 343] in the specific setting of semi-Lagrangian potential vorticity-based numerical codes. Later, it was recognised as an instance of the more general principle of adiabatic invariance of fast degrees of motion under slow perturbations. From this point of view, the system is slowly deformed from a linearised configuration to the full nonlinear dynamics. In the former, linear analysis yields an exact separation of balanced and unbalanced flow. In the latter, a given base-point coordinate, e.g. the height or potential vorticity field, can be matched. This formulation leads to a boundary value problem in time. In this paper, we show that this more general viewpoint leads to practical implementations of optimal balance on top of a primitive variables (here, velocity-height variables) numerical code. We identify preferred choices for several design parameters. The most critical choices concern the linear projector onto the slow modes at the linear-end boundary and the choice of base-point coordinate at the nonlinear end. We find that, even though the evolutionary model is formulated in primitive variables, potential vorticity based end-point conditions are advantageous. In particular, the only universally robust linear projector is the oblique projector onto the Rossby modes along the gravity-wave modes, which can be interpreted as the distinct non-orthogonal projector onto the Rossby modes that preserves the linear potential vorticity. Hence, the projector can be formulated as an elliptic partial differential equation which holds promise for using the method to produce an accurate nonlinear mode decomposition for more general models without the need to resort to asymptotic analysis.

Acknowledgments

We thank Gualtiero Badin, Manita Chouksey, Colin Cotter, Sergey Danilov, David Dritschel, Carsten Eden, Georg Gottwald, Haidar Mohamad, Francis Poulin, Jacques Vanneste and Jin-Song von Storch for interesting discussions on balance and optimal balance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work contributes to the project “The Interior Energy Pathway” of the Collaborative Research Center TRR 181 “Energy Transfers in Atmosphere and Ocean” funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project number 274762653.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,267.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.