Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 12
131
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Managing the efficiencies of three different bacterial isolates for removing atrazine from wastewater

, & ORCID Icon
Pages 948-959 | Published online: 29 Nov 2022
 

Abstract

Three individual bacterial isolates previously isolated from two types of soil with a different history of atrazine applications were chosen, purified, and subjected to subsequent work. Identification of the individual bacterial isolates was conducted using molecular methods 16S rRNA and then tested for their atrazine degradation potentials. Effects of different parameters like mixing, starvation, UV exposure, and sodium citrate for enhancing the atrazine bioremediation process by identified bacteria were also studied. The molecular method identified individual bacterial isolates as Stenotrophomonas sp. strain SD2 (strain SD2), Bacillus cereus strain BC3 (strain BC3), and Paenarthrobacter ureafaciens strain AD3 (strain AD3). The bacterial isolate strain AD3 was able to degrade 47.95% of atrazine after 28 days. Mixing strain AD3 with strain BC3 showed almost doubled of atrazine degradation percentage (61.39%) of using strain BC3 as an individual isolate (36.59%). The atrazine degradation efficacy for Stenotrophomonas sp. strain SD2, Bacillus cereus strain BC3, and Paenarthrobacter ureafaciens strain AD3 was increased between 1.28 and 4.32 folds after the starvation process. The UV exposure enhanced the efficiencies of the tested isolates either individual or mixtures (from 1.08 to 4.63-fold). Adding sodium citrate as a stimulator to the media of growing the tested isolates enhanced their potential for atrazine degradation.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.