132
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Transition probabilities and ARL performance of Six Sigma zone control charts

Pages 3976-3991 | Received 27 Feb 2017, Accepted 26 May 2018, Published online: 01 Oct 2018
 

Abstract

In this article, Six Sigma zone control charts (SSZCCs) are proposed for world class organizations. The transition probabilities are obtained using the Markov chain approach. The Average Run Length (ARL) values are then presented. The ARL performance of the proposed SSZCCs and the standard Six Sigma control chart (SSCC) without zones or run rules is studied. The ARL performance of these charts is then compared with those of the other standard zone control charts (ZCCs), the modified ZCC and the traditional Shewhart control chart (SCC) with common run rules. As expected, it is shown that the proposed SSZCC outperforms the standard SSCC without zones or run rules for process shifts of any magnitude. When compared to the other standard ZCCs and the Shewhart chart with common run rules, it is observed that the proposed SSZCCs have much higher false alarm rates for smaller shifts and hence they prevent unwanted process disturbances. The application of the proposed SSZCC is illustrated using a real time example.

Acknowledgement

Author would like to thank the Editor and anonymous reviewers for their constructive suggestions on the original version of the paper that helped to improve the same to a great extent.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,069.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.