236
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Long-term stability of insulin glulisine loaded nanoparticles formulated using an amphiphilic cyclodextrin and designed for intestinal delivery

, , , ORCID Icon, , ORCID Icon & show all
Pages 1073-1079 | Received 13 Jan 2020, Accepted 22 May 2020, Published online: 09 Jun 2020
 

Abstract

Long-term stability is one of the main challenges for translation of therapeutic proteins into commercially viable biopharmaceutical products. During processing and storage, proteins are susceptible to denaturation. The aim of this work was to evaluate the stability of amphiphilic cyclodextrin-based nanoparticles (NPs) containing insulin glulisine. The stability of the NP dispersion was systematically evaluated following storage at three different temperatures (4 °C, room temperature (RT) and 40 °C). While the colloidal parameters of the NPs in terms of size and zeta potential were maintained (109 ± 9 nm, polydispersity index 0.272, negative zeta potential –25 ± 3 mV), insulin degraded over 60 days during storage. To enhance the shelf life of the product and to circumvent the need for cold-chain maintenance, a lyophilized formulation containing insulin glulisine NPs (1.75 mg/mL of NPs) and 25 mg/mL trehalose was produced. The freeze-dried powder extended the stability of the product for up to 30 days at ambient temperature and 90 days at 4 °C (with 95% and >80% insulin recovery, respectively). Following intra-intestinal administration of the freeze-dried formulation, while no lowering of blood glucose was seen, insulin glulisine was detected in both portal and systemic blood indicating that potential exists for further development of the formulation to simultaneously achieve prolonged stability and therapeutic efficacy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the European TRANS-INT Consortium, which received funding from the European Union’s Seventh Framework Program for Research, Technological Development and Demonstration under Grant Agreement No. 281035.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.