135
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Robust freeze-drying process re-design of a legacy product based on risk analysis and design of experiments

, , , &
Pages 2022-2031 | Received 11 Jun 2020, Accepted 21 Oct 2020, Published online: 04 Nov 2020
 

Abstract

In this study, a QbD freeze-drying process re-design applied to a lyophilized injectable drug product is presented. The main objective was to assess the freeze-drying process robustness using risk analysis and a proper experimental design. First, the product’s thermal fingerprint was characterized by thermal analysis and freeze-drying microscopy. Then, according to the output of the risk analysis, primary drying temperature and pressure were studied by a Doehlert DoE design with four responses; primary drying time, appearance, residual moisture content, and reconstitution time. Statistically significant MLR models were obtained for residual moisture content and primary drying time. In the latter, the temperature factor was the predominant factor to predict the duration of the primary drying stage. Two additional lab-scale batches were run to confirm the mathematical model predictions. Finally, optimal primary drying conditions (30 °C, 0.400 mbar) were selected to minimize the duration of the primary drying stage, while preserving the quality of the product. It was possible to set high temperature and pressure values because no collapse temperature was found during the thermal characterization of the product. Secondary drying temperature and time were defined based on the residual moisture content results. It was shown that secondary drying is robust between 30 °C and 50 °C and from 3 to 16 h. In conclusion, we were able to define a robust freeze-drying process which was further validated at an industrial scale with satisfactory results and approved by the health authorities in different countries around Europe.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was partially funded by MINECO (Spain) through the project CTQ 2016-79696-P (AEI/FEDER, EU). And by Generalitat de Catalunya through a Ph.D. scholarship in the framework of Industrial Doctorates (project 2014-DI-0012) to G. Clua.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.