231
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating potential TRPV1 positive feedback to explain TRPV1 upregulation in airway disease states

ORCID Icon, ORCID Icon, , , ORCID Icon, & show all
Pages 1924-1934 | Received 25 Apr 2021, Accepted 22 Apr 2022, Published online: 08 May 2022
 

Abstract

Objective

The airway epithelium is a potential source of pathophysiology through activation of transient potential receptor vallinoid type 1 (TRPV1) channel. A positive feedback cycle caused by TRPV1 activity is hypothesized to induce upregulation and production of inflammatory cytokines, leading to exacerbations of chronic airway diseases. These cytokine and protein regulation effects were investigated in this study.

Methods

Healthy (BEAS-2B) and cancer-derived (Calu-3) airway epithelial cell lines were assessed for changes to TRPV1 protein expression and mRNA expression following exposure to capsaicin (5–50 µM), and TRPV1 modulators including heat (43 °C), and hydrochloric acid (pH 3.4 to pH 6.4). Cytotoxicity was measured to determine the working concentration ranges of treatment. Subsequent bronchoconstriction by TRPV1 activation with capsaicin was measured on guinea pig airway tissue to confirm locally mediated activity without the action of known neuronal inputs.

Results

TRPV1 protein expression was not different for all capsaicin, acidity, and heat exposures (p > 0.05), and was replicated in mRNA protein expression (p > 0.05). IL-6 and IL-8 expression were lower in BEAS-2B and Calu-3 cell lines exposed with acidity and heat (p < 0.05), but not consistently with capsaicin exposure, with potential cytotoxic effects possible.

Conclusions

TRPV1 expression was present in airway epithelial cells but its expression was not changed after activation by TRPV1 activators. Thus, it was not apparent the reason for reported TRPV1 upregulation in patients with airway disease states. More complex mechanisms are likely involved and will require further investigation.

Disclosure statement

This research, including all authors, did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.