184
Views
0
CrossRef citations to date
0
Altmetric
Abstract

Vibrational spectra and conformations for chiral opiates in changing solvents

, , , &
Pages 242-254 | Published online: 04 Aug 2020
 

Abstract

Vibrational spectra for chiral isomers of the neuropeptide Dermorphin are measured and analyzed in different solvents using FT-IR, Raman spectroscopy and computational means. This is in order to understand the effect that different solvents have on the corresponding spectra of peptides with chiral (L,D) amino-acid isomers. The D-Alanine form of particularly Dermorphin is many times more potent than the L-Alanine form, which we attribute predominantly to the influence of the solvents. The solvents investigated are H2O/D2O, DMSO and chloroform. They were chosen due to their varied polarity. The study is an experimental complement to the theoretical studies of the structure of Dermorphin and its docking to the µ (mu)-Receptor. The conclusions about the restrictions of the conformational space and the dynamical degrees of freedom are being assessed by vibrational spectroscopy. The main results derived from the experimental spectra of Dermorphin L/D-Alanine in various solvents, is the pronounced difference between the chiral forms, especially seen in the water solvent due to the strong polarity shift resulting from mutating the second position of the peptide from an L- to a D-Alanine.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 678.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.