388
Views
2
CrossRef citations to date
0
Altmetric
Review

Advanced spectrometric methods for characterizing bio-oils to enable refineries to reduce fuel carbon intensity during co-processing

, , , , , & show all
Pages 77-87 | Published online: 17 May 2021
 

Abstract

A promising approach for supplementing petroleum-derived fuels to support reductions in green-house gas emissions is to convert abundant biomass feedstocks into renewable carbon-rich oils using pyrolysis. However, the resultant bio-oils contain various oxygenated compounds that can impart acidity, chemical and thermal instability, and immiscibility with petroleum derived fuels, necessitating further upgrading to derive fuel blendstocks. Co-processing bio-oils and petroleum-derived liquids in existing refineries is a potentially near-term, cost-effective approach for upgrading bio-oils while reducing refinery carbon intensities. However, one cause for hesitation in co-processing bio-oils is limited comprehensive characterization and speciation of the bio-oil components. Advanced analytical techniques are currently under investigation to enable identification of elusive species in bio-oils, enabling researchers to develop strategies to mitigate catalyst deactivation agents and contaminants. This review provides a brief overview of several analytical methods commonly used to analyze bio-oils and their limitations. In addition, advanced techniques currently under development are discussed to further elucidate bio-oil components that may limit its end use. This will help inform the technical and economic feasibility of co-processing bio-oils with petroleum-derived liquids, therefore, improving the overall downstream processes for biofuels blendstock production.

Acknowledgments

The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Funding

This work was authored in part by the National Renewable Energy Laboratory, managed and operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding was provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 678.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.