371
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Novel missense mutations in gidB gene associated with streptomycin resistance in Mycobacterium tuberculosis: insights from molecular dynamics

, , , , , & show all
Pages 20-35 | Received 25 Sep 2017, Accepted 30 Nov 2017, Published online: 04 Jan 2018
 

Abstract

Streptomycin was the first antibiotic used for the treatment of tuberculosis by inhibiting translational proof reading. Point mutation in gidB gene encoding S-adenosyl methionine (SAM)-dependent 7-methylguanosine (m7G) methyltransferase required for methylation of 16S rRNA confers streptomycin resistance. As there was no structural substantiation experimentally, gidB protein model was built by threading algorithm. In this work, molecular dynamics (MD) simulations coupled with binding free energy calculations were performed to outline the mechanism underlying high-level streptomycin resistance associated with three novel missense mutants including S70R, T146M, and R187M. Results from dynamics analyses suggested that the structure distortion in the binding pocket of gidB mutants modulate SAM binding affinity. At the structural level, these conformational changes bring substantial decrease in the number of residues involved in hydrogen bonding and dramatically reduce thermodynamic stability of mutant gidB–SAM complexes. The outcome of comparative analysis of the MD simulation trajectories revealed lower conformational stability associated with higher flexibility in mutants relative to the wild-type, turns to be major factor driving the emergence of drug resistance toward antibiotic. This study will pave way toward design and development of resistant defiant gidB inhibitors as potent anti-TB agents.

Data availability

The datasets supporting the conclusions of this article are included methods section of submitted manuscript.

Acknowledgments

BP is thankful to University Grants Commission (UGC) for D.S. Kothari Post-Doctoral Fellowship. Authors acknowledge Jawaharlal Nehru University for providing all computational facilities. AG is grateful to University Grants Commission, India for the Faculty Recharge Position.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.