310
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons

ORCID Icon & ORCID Icon
Pages 1880-1907 | Received 31 Jan 2018, Accepted 05 Mar 2018, Published online: 17 May 2018
 

Abstract

In this Review, we have summarized and generalized the results of the investigation of the microstructural mechanisms of the tautomerization by the counter movement of the protons along the neighboring intermolecular H-bonds in 22 biologically important pairs of nucleotide bases in the framework of the original method, which allows to trace the evolution of the physicochemical parameters, that characterize these processes along the intrinsic reaction coordinate (IRC). It was demonstrated the performance of the introduction of the conception of the key points (KPs) (from nine to five, depending on the symmetry and nature of system), which exhaustively characterize the flow of the tautomerization processes. It was proved that for all tautomerizing base pairs the extrema of the first derivative of the electron energy of the complex by IRC coincide with the second and penultimate KPs, in which the Laplacian of the electron density equals zero at the corresponding (3,-1) bond critical points of the H-bonds. It was established the linear dependence of the width of the transition state zone of the DPT tautomerization on the degree of its asynchrony. Authors emphasize that the tautomerization reaction through the DPT of the H-bonded pairs of nucleotide bases can be considered successful in those and only in those case if the tautomerized complex is a dynamically stable system, during lifetime of which low-frequency intermolecular vibrations could develop. Perspectives of the application of the obtained approaches to the thorough study of the proton transfer processes in the biologically important objects have been briefly discussed.

Acknowledgments

The authors gratefully appreciate technical support and computational facilities of joint computer cluster of SSI “Institute for Single Crystals” of the National Academy of Sciences of Ukraine (NASU) and Institute for Scintillation Materials of the NASU incorporated into Ukrainian National Grid. This work was partially supported by the Grant of the NASU for young scientists, Grant of the President of Ukraine to support the research of young scientists [project number F70] from the State Fund for Fundamental Research of Ukraine of the Ministry of the Education and Science of Ukraine and by the Scholarship of Verkhovna Rada (Parliament) of Ukraine for the talented young scientists in 2017 year given to DrSci Ol’ha Brovarets’. O. O. B. expresses sincere gratitude to organizing committee for financial support of the participation in the “EMBO/FEBS Lecture Course Spetsai Summer School 2017 for Proteins and Organized Complexity” (September 24–October 1, 2017, Spetses, Greece), to Lawyers Association “AVER Lex” (Kyiv, Ukraine) for the sponsorship of the presenting the plenary lecture as invited speaker at the “EMN Meeting on Computation and Theory” (November 6–10, 2017, Dubai, United Arab Emirates) and to Max Plank Institute of Plant Physiology (hosted by Prof. Yariv Brotman) for the kind invitation and financial support of the invited lecture (November 29, 2017, Potsdam, Germany).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.