178
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Delineating the active site architecture of G9a lysine methyltransferase through substrate and inhibitor binding mode analysis: a molecular dynamics study

, & ORCID Icon
Pages 2581-2592 | Received 07 Apr 2018, Accepted 30 May 2018, Published online: 17 Nov 2018
 

Abstract

Mono- and di-methylation of the H3K9 residue in the histone tail by G9a lysine methyltransferase is associated with transcriptional suppression of genes. Here, we use molecular dynamics simulation and free energy calculations of five different modified/mutated G9a substrate peptides to elucidate the rationale behind the substrate binding to G9a. We also investigated the binding energy contribution based architecture of the active site of G9a to understand substrate and inhibitor binding. Wild-type peptide (H3K9) shows better binding affinity than mono- and di-methylated lysine (K9) and other modified peptides (K9A and R8A). Arg8 of the substrate peptide is crucial for determining the degree of conformational freedom/stability of the wild-type substrate peptide, as well as binding to G9a. Our results also suggest that the G9a active site is segregated into energy rich and low regions, and the energy rich region alone is used by the inhibitors for binding. These insights into the active site architecture should be taken into consideration in virtual screening experiments designed to discover novel inhibitors for G9a. In particular, compounds that could interact with the six residues of G9a – Asp1074, Asp1083, Leu1086, Asp1088, Tyr1154 and Phe1158 – should be preferentially tested in G9a inhibition biological assays.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.