538
Views
49
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, molecular docking and QSAR study of thiazole clubbed pyrazole hybrid as α-amylase inhibitor

, , , , , & ORCID Icon show all
Pages 91-107 | Received 02 Dec 2019, Accepted 09 Dec 2019, Published online: 27 Dec 2019
 

Abstract

In search of potent α-amylase inhibitors, herein we report the synthesis, molecular docking and QSAR study of some thiazole clubbed pyrazole hybrids (TCPH) i.e., 1-((1-phenyl-3-aryl-1H-pyrazole-4-yl)methylene)-2-(4-arylthiazole-2-yl)hydrazine (4a–4r) as an α-amylase inhibitors. Among the different analogues, compounds 4g and 4h were found to be most potent at 50 µg/mL with 89.15% and 88.42% of inhibition. The Monte Carlo optimisation method was applied to build robust QSAR models for the prediction of percentage inhibition of TCPH at different concentration with various statistical parameters. The Simplified Molecular Input Line Entry System (SMILES) was applied to symbolise the molecular structure, descriptor calculation and model development. The role of the index of ideality correlation (IIC) was also studied which revealed a model for split 3 as a leading model with best R2 i.e., 0.9198. The compound 4l at different concentration (TCPH11, TCPH29 and TCPH47) was outside the applicability domain (AD) for the developed QSAR models for split 4 only. The SMILES attributes at three different concentrations were also detected. These attributes are the promoters of percentage increase/decrease in inhibition efficiency of the inhibitors. The docking simulation of most active compounds (4g and 4h) were performed within the active site of Aspergillus oryzae α-amylase (PDB ID: 7TAA) to analyse the binding conformation and interactions responsible for their activity. As a result, it was found that the binding interactions found between 4g, 4h and α-amylase were similar to those responsible for α-amylase inhibition by acarbose.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Financial support as senior research fellowship (SRF) by Haryana State Council of Science and Technology is acknowledged for accomplishing this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.