199
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular modeling studies of benzothiophene-containing derivatives as promising selective estrogen receptor downregulators: a combination of 3D-QSAR, molecular docking and molecular dynamics simulations

, , &
Pages 2702-2723 | Received 10 Jan 2020, Accepted 31 Mar 2020, Published online: 20 Apr 2020
 

Abstract

Selective estrogen receptor downregulators (SERDs) for the treatment of positive breast cancer can act both as estrogen alpha receptor (ERα) antagonists and degraders. In this study, the optimal antagonist models (CoMFA-A, q2 = 0.660, r2 = 0.996; CoMSIA-A, q2 = 0.728, r2 = 0.992) and degrader models (CoMFA-D, q2 = 0.850, r2 = 0.996; CoMSIA-D, q2 = 0.719, r2 = 0.995) of a series of potent benzothiophene-containing SERDs were constructed to explore the three-dimensional quantitative structure–activity relationship. Internal and external validation indicated that all models exhibited good applicability, high predictive ability and robustness. Contour maps revealed the relationships between the essential structural features and antagonistic and degradation activities. Additionally, molecular docking, molecular dynamics and free energy calculation studies were further performed to investigate the detailed binding mode. Results indicated that several key residues, ARG394, GLU353, PHE404 and ILE424, were crucial for the stability of the ligand binding domain. The hydrophobic, electrostatic and Van der Waals interactions played significant effect on the binding affinity. Finally, ten novel compounds were designed based on above findings, where the predicted activity of compound D8 was equivalent to that of the compound LSZ102. 3D-QSAR, ADMET and bioavailability predictions indicated that all designed compounds with good predicted activity, good physicochemical and bioavailability could be potential candidates for SERDs. These results and combinations of computational methods provided guidance for the rational drug design of novel potential SERDs.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that there are no financial/commercial conflicts of interest.

Additional information

Funding

This work was supported by the Shanghai Natural Science Foundation (NO. 19ZR1455400).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.