375
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Novel α-amylase and α-glucosidase inhibitors from selected Nigerian antidiabetic plants: an in silico approach

, , &
Pages 6340-6349 | Received 14 Nov 2020, Accepted 23 Jan 2021, Published online: 13 Feb 2021
 

Abstract

This study aimed to identify novel α-amylase and α-glucosidase inhibitors from Nigerian antidiabetic plants through in silico approach. Virtual screening of the 93 phytoconstituents was performed, and their inhibitory potentials were ranked based on their docking scores. Five hit molecules were selected for each enzyme target with their hydrogen bonding, hydrophobic, electrostatic, and pi interactions analyzed with discovery studio visualizer. The drug-likeness and ADMET studies of the hit molecules were performed to ascertain their druggability properties. Further, three top-ranked hit molecules were subjected to molecular dynamics simulations. The virtual screening, drug-likeness property, and ADMET studies, and molecular dynamics simulations carried out reveal Newbouldiaquinone A, Foetidin, Chamuvaritin, Cajaflavanone, and Azadirolic acid as potential inhibitors of α-amylase while Chamuvaritin, Newbouldiaquinone A, Flowerone, Scoparic acid A and Nimonol were potential inhibitors of α-glucosidase enzyme.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.