507
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Unraveling the potential role of bioactive molecules produced by Trichoderma spp. as inhibitors of tomatinase enzyme having an important role in wilting disease: an in-silico approach

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 7535-7544 | Received 17 Dec 2020, Accepted 26 Feb 2021, Published online: 15 Mar 2021
 

Abstract

Tomatinase; a saponin detoxification enzyme produced by Fusarium oxysporumf.sp. lycopersici is reported as a causative agent for wilting disease in tomato crops. The disease is instigated by inhibiting the activity of α-tomatine. Trichoderma spp. widely used as biocontrol agent play an essential role in plant growth and pathogen control. In the current study, an in-silico approach using substrate docking, molecular dynamics and MM/PBSA analysis was used to evaluate the potential role of bioactive metabolites produced by Trichoderma spp. The study aims to establish the efficacy of catalytic tendency of the bioactive metabolites to combat the effect of tomatinase enzyme employing α-tomatine as the substrate. By means of the integrated molecular modeling approach; novel bioactive metabolites namely, Trichodermamide B, Trichosetin and Virone were found to be the potential inhibitors against tomatinase enzyme secreted by Fusarium oxysporum f.sp. lycopersici. Molecular dynamic (MD) simulations displayed that the screened ligands bound tomatinase during 150 ns of MD simulations. Furthermore, the (MM-PBSA) free energy calculations depicted that screened molecules possess stable and favorable energies for Trichodermamide B (-7.1 kcal/mol), Trichosetin (-7.4 kcal/mol) and Virone (-7.9 kcal/mol) thereby instigating robust binding with the enzyme’s binding site. The results attained in this study, reflects that these bioactive metabolites may serve as potential substrates to control and inhibit the tomatinase enzyme; playing an integral role in combating the wilt disease.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Authors are thankful to CRDT, IIT Delhi for providing the research funds and HPC, IIT Delhi for providing the platform for conducting the in-silico studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.