211
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

On the search for COVID-19 therapeutics: identification of potential SARS-CoV-2 main protease inhibitors by virtual screening, pharmacophore modeling and molecular dynamics

&
Pages 7815-7828 | Received 09 Jan 2021, Accepted 06 Mar 2021, Published online: 22 Mar 2021
 

Abstract

COVID-19 also known as SARS-CoV-2 outbreak in late 2019 and its worldwide pandemic spread has taken the world by surprise. The minute-to-minute increasing coronavirus cases (>85 M) and progressive deaths (≈1.8 M) calls for finding a cure to this devastating pandemic. While there have been many attempts to find biologically active molecules targeting SARS-CoV-2 for treatment of this viral infection, none has found a way to the clinic yet. In this study, a 3-feature structure-based pharmacophore model was designed for SARS-CoV-2 main protease (MPro) that plays a vital role in the viral cellular penetration. High throughput virtual screening of the lead-like ZINC library was then performed to find a potent inhibitor employing the predesigned pharmacophore. In-silico pharmacokinetics/toxicity prediction study was subsequently applied towards the best hits. Finally, a 50 ns molecular dynamics simulation was carried out for the best hit and compared to the co-crystallized ligand where the hit compound displayed high binding and comparable interactions. The results identified new hits for SARS-CoV-2 MPro inhibition showing good docking score, pharmacokinetics and toxicity profile, drug-likeness, high binding energy in addition to a promising synthetic accessibility. Identifying new small compounds as potential leads for inhibiting SARS-CoV-2 is a very important step towards designing a synthesizing of promising drug candidates.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.