183
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Insights into the interaction of azinphos-methyl with bovine serum albumin: experimental and molecular docking studies

, , ORCID Icon, &
Pages 11863-11873 | Received 10 May 2021, Accepted 02 Aug 2021, Published online: 24 Aug 2021
 

Abstract

In the present study, combining spectroscopic and molecular modeling techniques has been used to analyze azinphos-methyl binding properties, as an organophosphorus pesticide, to bovine serum albumin. The quenching interaction of azinphos-methyl with bovine serum albumin was investigated in an appropriate physiological state (pH = 7.4). Fluorescence spectroscopy, UV–visible spectroscopy, circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). Findings showed differences in the secondary protein structure microenvironment following interaction with azinphos-methyl. The results from spectroscopic experiments suggest that azinphos-methyl binds to bovine serum albumin residues with a binding constant in the range of 0.099 × 105−0.209 × 105 M−1 in one binding site (Tyr 160). The experimental results are supported by computational techniques such as docking using a bovine serum albumin crystal model. The results show that azinphos-methyl is linked to the site I of bovine serum albumin (in subdomain IB), and the result was in accordance with the experimental result. Based on the negative ΔG°, ΔH° and ΔS° values, the binding between azinphos-methyl and bovine serum albumin was spontaneous, and docking studies confirmed hydrogen bonding and van der Waals forces between them.

Communicated by Ramaswamy H. Sarma

Acknowledgements

We would like to express our very great appreciation to Dr. Majid Amiri and Dr. Ali Heydari for their valuable and constructive suggestions during the planning and development of this research work. Their willingness to give his time so generously has been very much appreciated.

Disclosure statement

The authors did not report any conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.