181
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Insights into the mutations leading to capreomycin resistance in S-adenosyl-L-methionine binding motif in TlyA from Mycobacterium tuberculosis

, , &
Pages 12239-12247 | Received 15 May 2021, Accepted 12 Aug 2021, Published online: 31 Aug 2021
 

Abstract

Capreomycin is a second line antibiotic used for the treatment of drug resistant Tuberculosis (TB), primary reason of death from a solo infectious organism, Mycobacterium tuberculosis (M.tb). Capreomycin targets the ribosome of bacteria and is known to bind at the interface where the large and small ribosomal subunits interact in M.tb using an S-Adenosyl Methionine (SAM) dependent methyltransferase, TlyA (Rv1794). Besides the methyltransferase activity, TlyA has also been found to show substantial haemolytic activity. The dual activity of TlyA highlights its crucial role in pathogenesis and virulence of M.tb. In the present study, docking and molecular dynamics (MD) simulations were carried out to explore the impact of mutations in a conserved SAM binding motif, 90GASTG94, on the affinity of TlyA enzyme for SAM. Two already reported mutations, A91E and S92L, and the remaining wild type residues, Gly90, Thr93, Gly94 mutated to alanine were taken into consideration resulting in a total of six systems, wild type + SAM, G90A + SAM, A91E + SAM, S92L + SAM, T93A + SAM and G94A + SAM that were subjected to 100 ns MD simulations. Docking scores and MD simulations analyses revealed that in contrast to wild type, mutants reduced the affinity of SAM for TlyA with most prominent effect observed in case of alanine mutants. Mutations also led to the loss of hydrogen bond and hydrophobic interactions and large-scale movement of atoms evident from the principal component analyses indicating their destabilizing impact on TlyA. The present study gives insights into influence of mutations on binding of SAM to TlyA in M.tb and promoting capreomycin resistance.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Salma Jamal acknowledges a Young Scientist Fellowship from the Department of Health Research (DHR), India. Abhinav Grover and Sonam Grover are grateful to University Grants Commission, India for the Faculty Recharge Position. Sonam Grover is grateful to Jamia Hamdard for DST Purse grant and UGC start up grant (F.4-5/2018(FRP-Start-Up-Grant) (Cycle IV) (BSR).

Disclosure statement

The authors declare that they have no competing interests.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.