435
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

New chalcone derivative, ethyl 2-(4-(3-(benzo[b]thiophen-2-yl)acryloyl)phenoxy)acetate: synthesis, characterization, DFT study, enzyme inhibition activities and docking study

, , , , , & show all
Pages 12260-12267 | Received 14 Jul 2021, Accepted 12 Aug 2021, Published online: 26 Aug 2021
 

Abstract

Chalcone derivative, ethyl 2-(4-(3-(benzo[b]thiophen-2yl)acryloyl)phenoxy)acetate (I), was synthesized. Compound I was characterized by proton and carbon-13 nuclear magnetic resonance (1H- and 13C- NMR), fourier transform infrared (FTIR) and mass (LC-ESI-MS/MS) spectroscopic methods. Density Functional Theory (DFT) calculations for compound I were performed at B3LYP/6-311++G(d,p) level. Optimized geometry, frontier molecular orbitals (HOMO; highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital), IR and NMR parameters of compound I were obtained. The evaluations reveal that the calculation results support the experimental results. The inhibition effects of compound I on cholinesterases and GST enzyme were investigated. Ki and inhibition concentration (IC50) values were calculated separately. Ki values of compound I were found for GST 14.19 ± 2.15, for AChE 11.13 ± 1.22 and for BChE 8.74 ± 0.76 recpectively. The docking analysis of compound I supported the enzym inhibition activity exhibiting high inhibition constant and binding energy for three receptors. Compound I is strongly bound to AChE, huBChE and Glutathione S-transferase with binding energies −11.24, −8.56 and −10.39 kcal/mol, respectively.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The enzyme inhibition part of this study was carried out in Igdır University Research Laboratory Practice and Research Center (ALUM). The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Disclosure statement

All the authors have no conflict for the publication of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.