425
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: a reverse vaccinology approach

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 13711-13726 | Received 19 Feb 2021, Accepted 10 Oct 2021, Published online: 25 Oct 2021
 

Abstract

SARS-CoV2 is a single-stranded RNA virus, gaining much attention after it out broke in China in December 2019. The virus rapidly spread to several countries around the world and caused severe respiratory illness to humans. Since the outbreak, researchers around the world have devoted maximum resources and effort to develop a potent vaccine that would offer protection to uninfected individuals against SARS-CoV2. Reverse vaccinology is a relatively new approach that thrives faster in vaccine research. In this study, we constructed Cytotoxic T Lymphocytes (CTL)-based multi-epitope vaccine using hybrid epitope prediction methods. A total of 121 immunogenic CTL epitopes were screened by various sequence-based prediction methods and docked with their respective HLA alleles using the AutoDock Vina v1.1.2. In all, 17 epitopes were selected based on their binding affinity, followed by the construction of multi-epitope vaccine by placing the appropriate linkers between the epitopes and tuberculosis heparin-binding hemagglutinin (HBHA) adjuvant. The final vaccine construct was modeled by the I-TASSER server and the best model was further validated by ERRAT, ProSA, and PROCHECK servers. Furthermore, the molecular interaction of the constructed vaccine with TLR4 was assessed by ClusPro 2.0 and PROtein binDIng enerGY prediction (PRODIGY) server. The immune simulation analysis confirms that the constructed vaccine was capable of inducing long-lasting memory T helper (Th) and CTL responses. Finally, the nucleotide sequence was codon-optimized by the JCAT tool and cloned into the pET21a (+) vector. The current results reveal that the candidate vaccine is capable of provoking robust CTL response against the SARS-CoV2.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Authors thanks the researchers worldwide for sharing the sequential information of SARS-CoV2. This helps us for effective construction of potent vaccine candidate against the virus using various bioinformatics tools.

Disclosure statement

Authors declare no conflict of interest.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.