116
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Brain DNA damage analysis in pesticide exposed wistar albino rats (Rattus norvegicus): a chemometric approach

, &
Pages 2211-2220 | Received 30 Aug 2021, Accepted 08 Jan 2022, Published online: 22 Jan 2022
 

Abstract

Brain the most important organ which controls most of the regulations in the body is composed of neurons and glia. As brain has a high metabolic rate and reduced cell renewal capability, the lipids, proteins and nucleic acids become the major targets of damage. In the present study carbofuran (CF) induced brain DNA damage in male wistar albino rats at sub-lethal doses (Control-A; B-1.0, C-0.5 and D-0.3 mg/kg BW) while the groups B1,C1, D1, B2, C2, D2 and B3, C3, D3 represents the exposure duration 30, 60 and 90 days each respectively. FTIR spectroscopy based chemometric analysis of functional groups in nucleic acids are reported, changes in band area and band frequencies were examined to understand the DNA damage by constructing heat map. Significant changes were observed in the band frequency, band areas, bandwidth and intensity values (p < 0.05, 0.01, 0.001). The principal component analysis was analyzed to study the alterations at the molecular level, which revealed maximum variance of 74% in groups A, B1, C1, D1 and C2 and 13.7% variance in B2, D2, B3, C3 and D3. The present study provides significant details to analyse DNA damage using non-conventional approach and can also be used for detecting DNA damage in several neural diseases and disorders and emphasizes on using FTIR spectral data through chemometric approach to analyse the DNA damage.

Communicated by Ramaswamy H. Sarma.

Acknowledgements

The authors acknowledge the Government of Karnataka, Directorate of Minorities (GOKDOM) for providing financial support under the scheme MPhil and PhD fellowship for minority students (award letter no: DOM/FELLOWSHIP/CR-12/2018-19, July 7, 2018) to carry out the research work. The authors also thank University Science Instrumentation Centre (USIC) for providing FT-IR facility.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.