214
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Unbinding of hACE2 and inhibitors from the receptor binding domain of SARS-CoV-2 spike protein

&
Pages 3245-3264 | Received 03 Dec 2021, Accepted 20 Feb 2022, Published online: 16 Mar 2022
 

Abstract

The first direful biomolecular event leading to COVID-19 disease is the SARS-CoV-2 virus surface spike (S) protein-mediated interaction with the human transmembrane protein, angiotensin-converting enzyme 2 (hACE2). Prevention of this interaction presents an attractive alternative to thwart SARS-CoV-2 replications. The development of monoclonal antibodies (mAbs) in the convalescent plasma treatment, nanobody, and designer peptides, which recognizes epitopes that overlap with hACE2 binding sites in the receptor-binding domain (RBD) of S protein (S/RBD) and thereby blocking the infection has been the center stage of therapeutic research. Here we report atomistic and reliable in silico structure-energetic features of the S/RBD interactions with hACE2 and its two inhibitors (convalescent mAb, B38, and an alpaca nanobody, Ty1). The discovered potential of mean forces exhibits free energy basin and barriers along the interaction pathways, providing sufficient molecular insights to design a B38 mutant and a Ty1-based peptide with higher binding capacity. While the mutated B38 forms a 60-fold deeper free energy minimum, the designer peptide (Ty1-based) constitutes 38 amino acids and is found to form a 100-fold deeper free energy minimum in the first binding basin than their wild-type variants in complex with S/RBD. Our strategy may help to design more efficacious biologics towards therapeutic intervention against the current raging pandemic.

Communicated by Ramaswamy H. Sarma

Acknowledgment

The authors thank computer centre, BARC for providing the ANUPAM parallel computational facility.

Disclosure statement

The authors declare no competing financial interest.

Additional information

Funding

The work was supported by DAE under project XII-N-R&D-02.04/Theoretical & Computational Chemistry of Complex Systems.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.