507
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico analysis of the predicted protein-protein interaction of syntaxin-18, a putative receptor of Peregrinus maidis Ashmead (Hemiptera: Delphacidae) with Maize mosaic virus glycoprotein

ORCID Icon, , & ORCID Icon
Pages 3956-3963 | Received 05 Oct 2021, Accepted 24 Mar 2022, Published online: 04 Apr 2022
 

Abstract

The corn planthopper, Peregrinus maidis Ashmead (Hemiptera:Delphacidae), is a widely distributed insect pest which serves as a vector of two phytopathogenic viruses, Maize mosaic virus (MMV) and Maize stripe virus (MStV). It transmits the viruses in a persistent and propagative manner. MMV is an alphanucleorhabdovirus with a negative-sense, single-stranded RNA unsegmented genome. One identified insect vector protein that may serve as receptor to MMV is Syntaxin-18 (PmStx18) which belongs to the SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins. SNAREs play major roles in the final stage of docking and subsequent fusion of diverse vesicle-mediated transport events. In this work, in silico analysis of the interaction of MMV glycoprotein (MMV G) and PmStx18 was performed. Various freely available protein-protein docking web servers were used to predict the 3 D complex of MMV G and PmStx18. Analysis and protein-protein interaction (PPI) count showed that the complex predicted by the ZDOCK server has the highest number of interaction and highest affinity, as suggested by the calculated solvation free energy gain upon formation of the interface (ΔiG = −31 kcal/mol). Molecular dynamics simulation of the complex revealed important interactions at the interface over the course of 25 ns. This is the first in silico analysis performed for the interaction on a putative receptor of P. maidis and MMV G. The results of the PPI prediction provide novel information for studying the role of Stx18 in the transport, docking and fusion events involved in virus particle transport in the insect vector cells and its release.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Research Council of the Philippines – Department of Science and Technology.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.