140
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Binding of human serum albumin with uranyl ion at various pH: an all atom molecular dynamics study

, ORCID Icon &
Pages 7318-7328 | Received 28 Jul 2022, Accepted 26 Aug 2022, Published online: 13 Sep 2022
 

Abstract

Uranium is routinely handled in various stages of nuclear fuel cycle and its association with human serum albumin (HSA) has been reported in literature, however, their binding characteristics still remains obscure. The present study aims to understand interaction of uranium with HSA by employing all atom molecular dynamics simulation of the HSA-metal ion complex. His67, His247 and Asp249 residues constitute the major binding site of HSA, which capture the uranyl ion (UO22+). A total of six sets of initial coordinates are used for Zn2+-HSA and UO22+-HSA system at pH = 4, 7.4 and 9, respectively. Enhance sampling method, namely, well-tempered meta-dynamics (WT-MtD) is employed to study the binding and un-binding processes of UO22+ and Zn2+ ions. Potential of mean force (PMF) profiles are generated for all the six sets of complexes from the converged WT-MtD run. Various basins and barriers are observed along the (un)binding pathways. Hydrogen bond dynamics and short-range Coulomb interactions are evaluated from the equilibrium run at each basins and barriers for both the ions at all pH values. The binding of UO22+ ion with HSA is the result of the dynamical balance between UO22+-HSA and UO22+-water short range Coulomb interactions. Zn2+ ion interact more strongly than UO22+ at all pH through short range Coulomb interactions. PMF values further concludes that UO22+ cannot associate to the Zn2+ bound HSA protein but can be captured by free HSA at all pH values i.e. endosomal, alkaline and physiological pH.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Prof(s). A. K. Tyagi is gratefully acknowledged for encouragement during the course of the work. VM is grateful to Dr Pramilla Sawant and Shri Probal Choudhary for their continuous support and encouragement. BARC computer centre is also acknowledged for providing ANUPAM computational facility.

Disclosure statement

The authors declare no conflict of interest.

Additional information

Funding

The work was supported by DAE under project RBA4013.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.