506
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel peptide inhibitors for the KRas-G12C variant to prevent oncogenic signaling

, , , &
Pages 8866-8875 | Received 05 Jul 2022, Accepted 15 Oct 2022, Published online: 27 Oct 2022
 

Abstract

Kirsten rat sarcoma viral oncogene homolog (KRas) activating mutations are common in solid tumors, accounting for 90%, 45%, and 35% of pancreatic, colorectal, and lung cancers (LC), respectively. Each year, nearly 150k new cases (both men and women) of KRas-mutated malignancies are reported in the United States. NSCLC (non-small cell lung cancer) accounts for 80% of all LC cases. KRas mutations are found in 15% to 25% of NSCLC patients. The main cause of NSCLC is the KRas-G12C mutation. The drugs Sotorasib and Adagrasib were recently developed to treat advanced NSCLC caused by the KRas-G12C mutation. Most patients do not respond to KRas-G12C inhibitors due to cellular, molecular, and genetic resistance. Because of their safety, efficacy, and selectivity, peptide inhibitors have the potential to treat newly developing KRas mutations. Based on the KRas mutations, peptide inhibitors that are highly selective and specific to individual lung cancers can be rationally designed. The current study uses an alanine and residue scanning approach to design peptide inhibitors for KRas-G12C based on the known peptide. Our findings show that substitution of F3K, G11T, L8C, T14C, K13D, G11S, and G11P considerably enhances the binding affinity of the novel peptides, whereas F3K, G11T, L8C, and T14C peptides have higher stability and favorable binding to the altered peptides. Overall, our study paves the road for the development of potential therapeutic peptidomimetics that target the KRas-G12C complex and may inhibit the KRas and SOS complex from interacting.

Communicated by Ramaswamy H. Sarma

Acknowledgement

The authors highly appreciate the research support of the Vice-Chancellor of Abdul Wali Khan University Mardan (Professor Zahoor-ul-Haq) and critical review and discussion of Dr. Beenish Khurshid. We thank Dr. Ajmal Khan for all the technical support for Molecular Docking and Peptide Designing.

Disclosure statement

The authors declare no competing interest.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.