134
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification of novel inhibitors against Escherichia coli utilizing HisC as a target from histidine biosynthesis pathway

, , &
Pages 9907-9914 | Received 16 May 2022, Accepted 10 Nov 2022, Published online: 23 Nov 2022
 

Abstract

Escherichia coli is a gram-negative bacterial pathogen that poses a significant challenge both clinically and epidemiologically. Large numbers of multi-drug resistant E. coli have emerged in the last decade, because of the selection pressure generated by the inadequate use of antibiotics. Although research to combat antibiotic resistance has been going on extensively but still lags in the rate of development of newer antibiotics. Therefore, newer approaches are required to speed up the rate of discovery of antibiotics. Computational methods for screening of inhibitors have made a significant contribution to the discovery of novel antimicrobials. The present study utilized histidinol-phospho aminotransferase (HisC) as a target. HisC is an enzyme that plays a crucial role in the biosynthesis of histidine and its absence in mammals makes it an attractive drug target. A ZINC library of 5000 natural compounds was screened against HisC (PDB ID: 1FG7) using PyRx and the first 500 hits were selected for secondary screening after sorting the result on the basis of binding score. Fifteen compounds passed the secondary filter ADME and out of these five passed toxicity filters; the best among five hits was selected on the basis of its binding score and inhibition constants. Further, molecular dynamics simulations and free binding were computed of selected five compounds and two natural compounds ZINC402598829 and ZINC31157928 complexed with HisC were found as highly stable. Overall, our results indicated that these natural sources could be used as potential HisC inhibitors.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

We are highly grateful to the Department of Science and Technology (DST) for offering financial assistance in the form of a fellowship to the manuscript’s first author (DST/INSPIRE/Fellowship/2015/IF150340).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.