159
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Discovery of anti-colon cancer agents targeting wild-type and mutant p53 using computer-aided drug design

ORCID Icon &
Pages 10171-10189 | Received 06 Jul 2022, Accepted 25 Nov 2022, Published online: 19 Dec 2022
 

Abstract

Mutations in the p53 gene are common and occur in over 50% of all cancers, as it is involved in DNA damage repair, cell cycle regulation and apoptosis. Moreover, the p53 gene is mutated in 70% of colon cancers. Therefore, the development of drugs to combat this mutation requires urgent attention. With this in mind, in silico drug design approaches were applied on quinoline derivatives with anticancer activity. In 3D-QSAR study, steric, electrostatic, hydrophobic and H-bond acceptor fields (SEHA) play an important role in prediction and design of new colon cancer compounds. Indeed, the two best CoMSIA/SEHA models with (Q2 = 0.737, R2 = 0.914, Rpred2 = 0.720) and (Q2 = 0.738, R2 = 0.919, Rpred2= 0.739) show good prediction of human colon carcinoma HCT 116 (p53+/+) and (p53−/−) activities, respectively. Furthermore, the predictive ability and robustness of these models were tested by several validation methods. Molecular docking analyses reveal crucial interactions with the active sites of the p53 protein in both wild type and mutant. Based on these theoretical studies, we designed 10 new compounds with good anticancer activity potential, which were evaluated using ADMET properties. Molecular dynamics simulations were performed to confirm the detailed binding mode of the docking results. Finally, the MM-GBSA based on molecular dynamics simulation confirmed that the designed compounds were able to form stable hydrogen bonding interactions with the crucial residues, which are essential to overcome the p53 mutation in colon cancer.

Communicated by Ramaswamy H. Sarma

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.