88
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Understanding the impact of halogen functional group (Br, Cl, F, OH) in amprenavir ligand of the HIV protease

&
Pages 12157-12170 | Received 22 Mar 2022, Accepted 01 Jan 2023, Published online: 16 Jan 2023
 

Abstract

We focused our attention towards the most dreadful disease that threatens the mankind of 20th century - Acquired immunodeficiency syndrome (AIDS), caused through the human immunodeficiency virus (HIV) and a sexually transmitted infection (STI). In this study, our foremost interest was to identify the potency and stability of HIV ligand- Amprenavir (APV) and its modelled functional group (Br, Cl, F, CF3, CH3, NH2) ligands through halogen and hydrogen bond contact, which will have a clear portrait on the structure activity of protein ligand interactions. This will assist chemist in synthesizing novel APV ligands, which are expected to inhibit the activity of HIV-1 protease enzyme. The binding strength of Amprenavir ligand with interacting hinge region amino acid side chains: Isoleucine (ILE 147, 150, 184), Valine (VAL 82), Alanine (ALA 28), Aspartic acid (25, 30, 125, 130) and Glycine (GLY 127, 149) were understood through interaction energy calculations at HF, B3LYP, M052X, MP2 level of theories for different basis set (6-311 G**, LANL2DZ). The present work will reveal an understandable picture about the halogen and hydrogen bond interaction that grip the contact of ligand and amino acids in the hinge region. Overall the Halogen atom (Br, Cl, F) functional groups improved the binding strength of APV in HIV protease; which provide a new novel path for the functional group preference on the ligand that enclose perfectly with the amino acid in the hinge region.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was part of the Research Project (File Number: YSS/2015/000275) and Palanisamy Deepa, is thankful to Science and Engineering Research Board (SERB), Government of India, New Delhi for the award of the Project and financial assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.