314
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of thiazole-based-thiourea analogs: as anticancer, antiglycation and antioxidant agents, structure activity relationship analysis and docking study

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, & show all
Pages 12077-12092 | Received 05 Oct 2022, Accepted 27 Dec 2022, Published online: 25 Jan 2023
 

Abstract

This work reports the convenient approach for the synthesis of thiazole based thiourea derivatives (1-21) from 2-bromo-1-(4-fluorophenyl)thiazole-1-one and phenyl isothiocyanates. The scope and diversity were achieved from readily available phenyl isothiocyanates. This protocol involves an oxidative C-S bond formation. Moreover, hybrid thiazole based thiourea scaffolds (1-21) according to literature known protocol were screened in vitro for anticancer Potential against breast cancer, antiglycation and antioxidant inhibitory profile. All newly developed scaffolds were showed moderate to good inhibitory potentials ranging from 0.10 ± 0.01 µM to 11.40 ± 0.20 µM, 64.20 ± 0.40 µM to 385.10 ± 1.70 µM and 8.90 ± 0.20 µM to 39.20 ± 0.50 µM against anticancer, antiglycation and antioxidant respectively. Among the series, compounds 12 (IC50 = 0.10 ± 0.01 µM), 10 (IC50 = 64.20 ± 0.40 µM) and 12 (IC50 = 8.90 ± 0.20 µM) with flouro substitution at phenyl ring of thiourea were identified to be the most potent among the series having excellent anticancer, antiglycation and antioxidant potential. The structure of all the newly synthetics scaffolds were confirmed by using different types of spectroscopic techniques such as HREI-MS, 1H- and 13C-NMR spectroscopy. To find structure-activity relationship, molecular docking studies were carried out to understand the binding mode of active inhibitors with active site of enzymes and results supported the experimental data.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Authors are thankful to Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University for providing excellent lab facility for this research. Also, authors acknowledged Dr. Ajmal Khan from University of Nizwa, Nizwa, Sultanate of Oman for facilitating in-silico study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.